Молекулы рнк выполняют следующие функции в клетке. Виды РНК. Строение и функции РНК. Значение РНК и ДНК

Основу жизни образуют белки. Функции их в клетке очень разнообразны. Однако белки «не умеют» размножаться. А вся информация о строении белков содержится в генах (ДНК).

У высших организмов белки синтезируются в цитоплазме клетки, а ДНК сокрыта за оболочкой ядра. Поэтому ДНК непосредственно не может быть матрицей для синтеза белка. Эту роль выполняет другая нуклеиновая кислота – РНК.

Молекула РНК представляет собой неразветвленный полинуклеотид, обладающий третичной структурой . Она образована одной полинуклеотидной цепочкой, и, хотя входящие в ее состав комплементарные нуклеотиды также способны образовывать между собой водородные связи, эти связи возникают между нуклеотидами одной цепочки. Цепи РНК значительно короче цепей ДНК. Если содержание ДНК в клетке относительно постоянно, то содержание РНК сильно колеблется. Наибольшее количество РНК в клетках наблюдается во время синтеза белка.

РНК принадлежит главная роль в передаче и реализации наследственной информации . В соответствии с функцией и структурными особенностями различают несколько классов клеточных РНК.

Существует три основных класса клеточных РНК.

  1. Информационная (иРНК), или матричная (мРНК) . Ее молекулы наиболее разнообразны по размерам, молекулярной массе (от 0,05х106 до 4х106) и стабильности. Составляют около 2% от общего количества РНК в клетке. Все иРНК являются переносчиками генетической информации из ядра в цитоплазму, к месту синтеза белка. Они служат матрицей (рабочим чертежом) для синтеза молекулы белка, так как определяют аминокислотную последовательность (первичную структуру) белковой молекулы.
  1. Рибосомальные РНК (рРНК) . Составляют 80–85% от общего содержания РНК в клетке. Рибосомальная РНК состоит из 3–5 тыс. нуклеотидов. Она синтезируется в ядрышках ядра. В комплексе с рибосомными белками рРНК образует рибосомы – органоиды, на которых происходит сборка белковых молекул. Основное значение рРНК состоит в том, что она обеспечивает первоначальное связывание иРНК и рибосомы и формирует активный центр рибосомы, в котором происходит образование пептидных связей между аминокислотами в процессе синтеза полипептидной цепи.
  2. Транспортные РНК (тРНК) . Молекулы тРНК содержат обычно 75-86 нуклеотидов. Молекулярная масса молекул тРНК около 25 тыс. Молекулы тРНК играют роль посредников в биосинтезе белка – они доставляют аминокислоты к месту синтеза белка, то есть на рибосомы. В клетке содержится более 30 видов тРНК. Каждый вид тРНК имеет характерную только для него последовательность нуклеотидов. Однако у всех молекул имеется несколько внутримолекулярных комплементарных участков, благодаря наличию которых все тРНК имеют третичную структуру, напоминающую по форме клеверный лист.

Вторичная структура РНК – характерна для тРНК, одноцепочечная, по форме напоминает «клеверный лист». Включает:

  • сравнительно короткие двойные спирали – стебли,
  • однотяжевые участки – петли.

Имеется 4 стебля (акцепторный, антикодоновый, дигидроуридиловый, псевдоуридиловый) и 3 петли.

«Псевдоузел» - элемент вторичной структуры РНК, схематично

Акцепторный стебель – содержит 3’- и 5’- концы полинуклеотидной цепи, 5’-конец заканчивается остатком гуаниловой кислоты, 3’-конец – триплетом ЦЦА и служит для образования сложноэфирной связи с АК.

Антикодоновый стебель узнает свой кодон на и-РНК в рибосомах по принципу комплементарности.

Псевдоуридиловый стебель служит для прикрепления к рибосоме.

Дигидроуридиловый стебель служит для связи с аминоацил-тРНК-синтетазой.

По химическому строению РНК (рибонуклеиновая кислота) является нуклеиновой кислотой, во многом схожей с ДНК . Важными отличиями от ДНК является то, что РНК состоит из одной цепи, сама цепь более короткая, вместо тимина в РНК присутствует урацил, вместо дезоксирибозы - рибоза.

По строению РНК является биополимером, мономерами которого являются нуклеотиды. Каждый нуклеотид состоит из остатка фосфорной кислоты, рибозы и азотистого основания.

Обычными для РНК азотистыми основаниями являются аденин, гуанин, урацил и цитозин. Аденин и гуанин относятся к пуринам, а урацил и цитозин - к пиримидинам. Пуриновые основания состоят из двух колец, а пиримидиновые из одного. Кроме перечисленных азотистых оснований в РНК встречаются и другие (в основном различные модификации перечисленных), в том числе и характерный для ДНК тимин.

Рибоза - это пентоза (углевод, включающий пять атомов углерода). В отличие от дезоксирибозы имеет дополнительную гидроксильную группу, что делает РНК более активной в химических реакциях по сравнению с ДНК. Также как и во всех нуклеиновых кислотах пентоза в РНК имеет циклическую форму.

Нуклеотиды соединены в полинуклеотидную цепь ковалентными связями между остатками фосфорной кислоты и рибозой. Один остаток фосфорной кислоты связан с пятым атомом углерода рибозы, а другой (от соседнего нуклеотида) связан с третьим атомом углерода рибозы. Азотистые основания связаны с первым атом углерода рибозы и располагаются перпендикулярно фосфатно-пентозному остову.

Ковалентно связанные нуклеотиды формируют первичную структуру молекулы РНК. Однако по своему вторичному и третичному строению РНК бывают весьма различными, что связано со множеством выполняемых ими функций и существованием различных типов РНК .

Вторичная структура РНК формируется за счет водородных связей возникающих между азотистыми основаниями. Однако, в отличие от ДНК, у РНК эти связи возникают не между разными (двумя) цепями полинуклеотида, а за счет различных способов складывания (петли, узлы и др.) одной цепи. Таким образом, вторичная структура молекул РНК бывает куда разнообразнее, чем у ДНК (где это почти всегда двойная спираль).

Строение многих молекул РНК также подразумевает третичную структуру, когда сворачиваются уже спаренные за счет водородных связей участки молекулы. Например, молекула транспортной РНК на уровне вторичной структуры сворачивается в форму, напоминающую клеверный лист. А на уровне третичной структуры сворачивается так, что становится похожа на букву Г.

Рибосомальная РНК образует комплексы с белками (рибонуклеопротеиды).

три основных вида РНК: информационная (иРНК), или матричная (мРНК), рибосомная (рРНК), и транспортная (тРНК). Они различаются по величине молекул и функциям. Все типы РНК синтезируются на ДНК при участии ферментов - РНК-полимераз. Информационная РНК состав­ляет 2-3 % всей клеточной РНК, рибосомная - 80-85, транс­портная - около 15 %.

иРНК . она считывает наследст­венную информацию с участка ДНК и в форме скопиро­ванной последовательности азотистых оснований переносит ее в рибосомы, где происходит синтез определенного белка. Каждая из молекул иРНК по порядку расположения нуклеотидов и по размеру соответствует гену в ДНК, с которого она была транс­крибирована. В среднем иРНК содержит 1500 нуклеотидов (75- 3000). Каждый триплет (три нуклеотида) на иРНК называется кодоном. От кодона зависит, какая аминокислота встанет в дан­ном месте при синтезе белка.

(тРНК) обладает относительно невысокой молекулярной массой порядка 24-29 тыс. Д и содер­жит в молекуле от 75 до 90 нуклеотидов. До 10 % всех нуклеоти­дов тРНК приходится на долю минорных оснований, что, по-ви­димому, защищает ее от действия гидролитических ферментов.Роль тРНК заключается в том, что они переносят аминокис­лоты к рибосомам и участвуют в процессе синтеза белка. Каждая аминокислота присоединяется к определенной тРНК. Ряд ами­нокислот обладает более одной тРНК. К настоящему времени обнаружено более 60 тРНК, которые отличаются между собой первичной структурой (последовательностью оснований). Вто­ричная структура у всех тРНК представлена в виде клеверного листа с двухцепочным стеблем и тремя одноцепочными). На конце одной из цепей находится акцепторный участок - триплет ЦЦА, к аденину которого присоединяется специфическая аминокислота.

(рРНК) . Они содержат 120-3100 нуклеотидов. Рибосомная РНК накапливается в ядре, в ядрышках. В ядрышки из цитоплазмы транспортируются рибосомные белки, и там происходит спонтанное образование субчастиц рибосом путем объединения белков с соответствующими рРНК. Субчастицы рибосомы вместе или врозь транспортируются через поры ядерной мембраны в цитоплазму.Рибосомы представляют собой органеллы величиной 20- 30 нм. Они построены из двух субчастиц разного размера и формы. На определенных стадиях белкового синтеза в клетке происходит разделение рибосом на субчастицы. Рибосомная РНК служит как бы каркасом рибосом и способствует первоначальному связыванию иРНК с рибосомой в процессе биосинтеза белка.

Генетический код- свойственный всем живым организмам способ кодирования аминокислотной последовательности белков при помощи последовательности нуклеотидов.

Свойства: 1) ге­нетический код триплетный (каждая аминокислота кодируется тремя нуклеотидами); 2) неперекрывающийся (соседние триплеты не имеют общих нуклеотидов); 3) вырожденный (за исключением метионина и триптофана все аминокислоты имеют более одного кодона); 4) универсальный (в основном одинаков для всех живых организмов); 5) в кодонах для одной аминокислоты первые два нуклеотида, как правило, одинаковы, а третий варьирует; 6) имеет линейный порядок считывания и характеризуется колине-арностью, т. е. совпадением порядка расположения кодонов в иРНК с порядком расположения аминокислот в синтезирующей­ся полипептидной цепи.

Относится к нуклеиновым кислотам. Молекулы-полимеры РНК намного меньше, чем у ДНК. Однако в зависимости от типа РНК количество входящих в них нуклеотидов-мономеров различается.

В состав нуклеотида РНК в качестве сахара входит рибоза, в качестве азотистого основания - аденит, гуанин, урацил, цитозин. Урацил по строению и химическим свойствам близок к тимину, который обычен для ДНК. В зрелых молекулах РНК многие азотистые основания модифицированы, поэтому в реальности разновидностей азотистых оснований в составе РНК намного больше.

Рибоза в отличие от дезоксирибозы имеет дополнительную -ОН-группу (гидроксильную). Это обстоятельство позволяет РНК легче вступать в химические реакции.

Главной функцией РНК в клетках живых организмов можно назвать реализацию генетической информации. Именно благодаря разным типам рибонуклеиновой кислоты генетический код считывается (транскрибируется) с ДНК, после чего на его основе синтезируются полипептиды (происходит трансляция). Итак, если ДНК в основном отвечает за хранение и передачу из поколения в поколение генетической информации (основной процесс – репликация), то РНК реализует эту информацию (процессы транскрипции и трансляции). При этом транскрипция происходит на ДНК, так что этот процесс относится к обоим типам нуклеиновых кислот и тогда с этой точки зрения можно сказать, что и ДНК отвечает за реализацию генетической информации.

При более подробном рассмотрении функции РНК намного разнообразнее. Ряд молекул РНК выполняют структурную, каталитическую и другие функции.

Существует так называемая гипотеза РНК-мира, согласно которой вначале в живой природе в качестве носителя генетической информации выступали только молекулы РНК, при этом другие молекулы РНК катализировали различные реакции. Данная гипотеза подтверждена рядом опытов, показывающих возможную эволюцию РНК. На это указывает и то, что ряд вирусов в качестве нуклеиновой кислоты, хранящей генетическую информацию, имеют молекулу РНК.

Согласно гипотезе РНК-мира ДНК появилась позже в процессе естественного отбора как более устойчивая молекула, что важно для хранения генетической информации.

Выделяют три основных типа РНК (кроме них есть и другие): матричная (она же информационная), рибосомальная и транспортная. Обозначаются они соответственно иРНК (или мРНК), рРНК, тРНК.

Информационная РНК (иРНК)

Почти все РНК синтезируются на ДНК в процессе транскрипции. Однако часто транскрипция упоминается как синтез именно информационной РНК (иРНК). Связано это с тем, что последовательность нуклеотидов иРНК в последствии определит последовательность аминокислот синтезируемого в процессе трансляции белка.

Перед транскрипцией нити ДНК расплетаются, и на одной из них с помощью комплекса белков-ферментов синтезируется РНК по принципу комплементарности, так же как это происходит при репликации ДНК. Только напротив аденина ДНК к молекуле РНК присоединяется нуклеотид, содержащий урацил, а не тимин.

На самом деле на ДНК синтезируется не готовая информационная РНК, а ее предшественник - пре-иРНК. Предшественник содержит участки последовательности нуклеотидов, которые не кодируют белок и которые после синтеза пре-иРНК вырезаются при участии малых ядерных и ядрышковых РНК («дополнительные» типы РНК). Эти удаляющиеся участки называются интронами . Остающиеся части иРНК называются экзонами . После удаления интронов экзоны сшиваются между собой. Процесс удаления интронов и сшивания экзонов называется сплайсингом . Усложняющей жизнь особенностью является то, что можно вырезать интроны по-разному, в результате получатся разные готовые иРНК, которые будут служить матрицами для разных белков. Таким образом, вроде бы один ген ДНК может играть роль нескольких генов.

Следует отметить, что у прокариотических организмов сплайсинга не происходит. Обычно их иРНК сразу после синтеза на ДНК готова к трансляции. Бывает, что пока конец молекулы иРНК еще транскрибируется, на ее начале уже сидят рибосомы, синтезирующие белок.

После того как пре-иРНК созревает в информационную РНК и оказывается вне ядра, она становится матрицей для синтеза полипептида. При этом на нее «насаживаются» рибосомы (не сразу, какая-то оказывается первой, другая - второй и т. д.). Каждая синтезирует свою копию белка, т. е. на одной молекуле РНК могут синтезироваться сразу несколько одинаковых белковых молекул (понятно, что каждая будет находиться на своей стадии синтеза).

Рибосома, передвигаясь от начала иРНК к ее концу, считывает по три нуклеотида (хотя вмещает шесть, т. е. два кодона) и присоединяет соответствующую транспортную РНК (имеющую соответствующий кодону антикодон), к которой присоединена соответствующая аминокислота. После этого с помощью активного центра рибосомы ранее синтезированная часть полипептида, соединенная с предшествующей тРНК, как-бы «пересаживается» (образуется пептидная связь) на аминокислоту, прикрепленную к только что пришедшей тРНК. Таким образом, молекула белка постепенно увеличивается.

Когда молекула информационной РНК становится не нужна, клетка ее разрушает.

Транспортная РНК (тРНК)

Транспортная РНК - это достаточно маленькая (по меркам полимеров) молекула (количество нуклеотидов бывает разным, в среднем около 80-ти), во вторичной структуре имеет форму клеверного листа, в третичной сворачивается в нечто подобное букве Г.


Функция тРНК - присоединение к себе соответствующей своему антикодону аминокислоты. В дальнейшем соединение с рибосомой, находящейся на соответствующем антикодону кодоне иРНК, и «передача» этой аминокислоты. Обобщая, можно сказать, что транспортная РНК переносит (на то она и транспортная) аминокислоты к месту синтеза белка.

Живая природа на Земле использует всего около 20-ти аминокислот для синтеза различных белковых молекул (на самом деле аминокислот куда больше). Но поскольку, согласно генетическому коду, кодонов больше 60-ти, то каждой аминокислоте может соответствовать несколько кодонов (на самом деле какой-то больше, какой-то меньше). Таким образом, разновидностей тРНК больше 20, при этом разные транспортные РНК переносят одинаковые аминокислоты. (Но и тут не так все просто.)

Рибосомная РНК (рРНК)

Рибосомную РНК часто также называют рибосомальной РНК. Это одно и то же.

Рибосомная РНК составляет около 80% всей РНК клетки, так как входит в состав рибосом, коих в клетке бывает достаточно много.

В рибосомах рРНК образует комплексы с белками, выполняет структурную и каталитическую функции.

В состав рибосомы входят несколько разных молекул рРНК, отличающиеся между собой как по длине цепи, вторичной и третичной структуре, выполняемым функциям. Однако их суммарная функция - это реализация процесса трансляции. При этом молекулы рРНК считывают информацию с иРНК и катализируют образование пептидной связи между аминокислотами.

Наименование параметра Значение
Тема статьи: Строение и функции РНК
Рубрика (тематическая категория) Дом

Строение РНК – полимер, мономерами которого служат нуклеотиды. Три азотистых основания те же, что в составе ДНК (аденин, гуанин, цитозин ); четвертое - урацил - присутствует в молекуле РНК вместо тимина. Нуклеотиды РНК содержат вместо дизоксирибозы рибозу . В цепочке РНК нуклеотиды соединяются ковалентными связями между рибозой одного нуклеотида и остатком фосфорной кислоты другого.

В организме РНК находятся в виде комплексов с белками - рибонуклеопротеидов.

Известны 2 типа молекул РНК: 1) Двуцепочные РНК характерны для некоторых вирусов – служат для хранения и воспроизведения наследственной информации (выполняют функции хромосом). 2) У большинства клеток - одноцепочные РНК – осуществляют перенос информации об аминокислотной последовательности в белках от хромосомы к рибосоме.

Одноцепочечные РНК имеют пространственную организацию : за счёт взаимодействия азотистых оснований друг с другом, а также с фосфатами и гидроксилами сахарофосфатного остова происходит сворачивание цепи в компактную структуру типа глобулы. Функция: перенос от хромосомы к рибосомам информацию о последовательности АК в белках, которые должны синтезироваться.

Существует несколько типов одноцепочных РНК по выполняемой функции или месту нахождения в клетке:

1. Рибосомная РНК (рРНК) составляет основную часть РНК цитоплазмы (80-90 %). Размеры 3000-5000 пар нуклеотидов. Вторичная структура в виде двухспиральных шпилек. р-РНК является структурным компонентом рибосом - органоиды клетки, где происходит синтез белков. Рибосомы локализованы в цитоплазме, ядрышке, митохондриях, хлоропластах. Состоят из двух субъединиц – большой и малой. Малая субчастица состоит из одной молекулы рРНК и 33 молекул белков, большая субъединица - 3 молекулы рРНК и 50 белков. Белки рибосом выполняют ферментативную и структурную функции. Функции р-РНК: 1) структурный компонент рибосом – их целостность необходима для биосинтеза белков, 2) обеспечивают правильность связывания рибосомы с м-РНК, 3) 2) обеспечивают правильность связывания рибосомы с т-РНК.

2. Матричная (мРНК ) – 2-6 % от общего количества РНК. Состоит из участков: 1) цистроны – определяют последовательность АК в кодируемых ими белках, имеют уникальную последовательность нуклеотидов, 2) нетранслируемые области располагаются на концах молекулы, имеют общие закономерности нуклеотидного состава.

Кэп – особая структура на 5′ конце м-РНК - ϶ᴛᴏ 7-метилгуанозинтрифосфат, образуется ферментативным путем в процессе транскрипции. Функции кэпа : 1) предохраняет 5′ конец от расщепления экзонуклеазами, 2) используется для специфического узнавания м-РНК в процессе трансляции.

Прецистронный нетранслируемый участок – 3-15 нуклеотидов. Функция : обеспечение правильного взаимодействия 5′ конца м-РНК с рибосомой.

Цистрон: содержит инициирующий и терминирующий кодоны – осо-

бые последовательности нуклеотидов, отвечающие за начало и окончание передачи информации с данного цистрона.

Постцистронный нетранслируемый участок – находится на 3′ конце, содержит гексануклеотид (часто ААУААА) и цепочку из 20-250 адениловых нуклеотидов. Функция – поддержание внутриклеточной стабильности м-РНК.

3. Транспортные РНК (тРНК ) – 15 % от общей РНК, состоят из 70-93 пар нуклеотидов. Функция: перенос аминокислоты к месту синтеза белка, ʼʼузнаютʼʼ (по принципу комплиментарности) участок мРНК, соответствующий переносимой аминокислоте. Для каждой из 20 АК имеются специфические т-РНК (обычно более одной). Все т-РНК имеют сложную структуру, изображаемую в виде клеверного листа. Клеверный лист содержит 5 участков:

1) 3′ конец – акцепторная ветвь (сюда присоединяется эфирной связью остаток АК),

2) антикидоновая ветвь – располагается напротив акцепторного участка, состоит из трёх неспаренных (имеющих свободные связи) нуклеотидов (антикодон) и специфически спаривается (антипараллельно, комлиментарно) с кодоном м-РНК.

Кодон – набор из 3 нуклеотидов (триплет) в м-РНК, определяющий место данной аминокислоты в синтезируемой полипептидной цепи. Это единица генетического кода, с помощью которого в молекулах ДНК и РНК ʼʼзаписанаʼʼ вся генетическая информация.

3) Т-ветвь (псевдоурединовая петля - содержит псевдоуредин) – участок, присоединяющийся к рибосоме. 4) Д-ветвь (дегидроуреди6новая петля - содержит дегидроуредин) – участок, обеспечивающий взаимодействие с соответствующим аминокислоте ферментом аминоацил-тРНК-синтетазой. 5) Дополнительная малая ветвь. Функции пока не изучены.

4) Ядерные РНК (яРНК) – компонент ядра клеток. Низкополимерная, стабильная, роль которой пока неясна.

Все виды РНК синтезируются в клеточном ядре на матрице ДНК под действием ферментов полимераз . При этом образуется последовательность рибонуклеотидов, комплементарная последовательности дезоксирибо-нуклеотидов в ДНК - ϶ᴛᴏ процесс транскрипции.

Строение и функции РНК - понятие и виды. Классификация и особенности категории "Строение и функции РНК" 2017, 2018.